

Metaprogramming Facilities

in Oberon

for Windows and Power Macintosh

Christoph Steindl and Hanspeter Mössenböck

Report 8
July 1996

1

Authors' address

Institut für Informatik (Systemsoftware)
Johannes Kepler Universität Linz
A-4040 Linz / Auhof

e-mail:
steindl@ssw.uni-linz.ac.at
moessenboeck@ssw.uni-linz.ac.at

© 1996 Institut für Informatik (Systemsoftware)
Johannes Kepler Universität Linz

2

Abstract

This report describes metaprogramming facilities in the Oberon V4 system for Power
Macintosh and Windows. Metaprogramming means that a module can access the
structure of other modules (i.e., procedures, types, run-time data) at run time.

The purpose of this report is threefold:
a) It explains the use and the internals of some existing but hardly known modules of

the Oberon V4 system (i.e., Modules and Types).
b) It introduces a new module Ref for exploring the structure of types, procedures,

stack frames, global data and heap data as well as for accessing the contents of
arbitrary variables at run time.

c) It explains the layout of module descriptors, type descriptors, dynamic array
descriptors, and stack frames in the Oberon implementations for Windows and
Power Macintosh.

We show how metaprogramming can be used in a number of interesting applications
such as a post mortem debugger that allows the user to zoom into records, arrays and
pointers, a heap inspector, a database interface, and a general output module.

Contents

1. Metaprogramming

2. Module Modules

3. Module Types

4. Module Ref

4.1 Riders
4.2 Interface and Documentation
4.3 Reference Information

5. Applications
5.1 A Post Mortem Debugger
5.2 A Database Interface
5.3 A Heap Inspector
5.4 A General Output Module

A Appendix: Run-Time Data Structures
A.1 Module Descriptors
A.2 Type Descriptors
A.3 Dynamic Array Descriptors
A.4 Stack Frames
A.5 How to Get the Modules

3

1. Metaprogramming

In programs we distinguish between the data level and the program level. Variables are
at the data level and can be accessed by the statements of a program. Modules, types
and procedures are at the program level. They serve to structure a program but they
are usually not viewed as data. Sometimes, however, programs want to inspect the
components of other programs at the program level, for example, in order to answer
the following questions:

- What are the field names of a record type T declared in module M?
- Which procedures are currently active (e.g., when a run-time trap occurs)? What are

the names, types and values of their variables?
- Does the caller of the currently executing procedure have a variable named "x", and

if so, what is its type and value?

Questions like these are considered to be on a meta level. They treat modules, types,
and procedures as data. They have to know the structure of this "data" in order to
access (or even modify) their contents. If a programming system supports questions of
this kind we call it a metaprogramming system. If programs can ask these question also
about themselves we call such a system reflective.

Metaprogramming and reflection were pioneered by the languages Lisp ([McCar60],
[Smi82]) and Smalltalk ([GR83]). In Lisp all programs are treated as data. It is possible
to inspect their structure and even to dynamically build new programs (higher order
functions) that can be executed. In Smalltalk types are represented as classes and
procedures as methods of these classes. The structure of a class is described in a
metaclass of which the class is an instance. The metaclass information can again be
accessed and even modified. Many other languages allow metaprogramming in a
similar way (e.g., Self [US87], CLOS [Att89], or Beta [MMN93]).

The original Oberon system [WiGu89] offered only a limited degree of
metaprogramming. It provided a module Modules which allowed programmers - among
other things - to inspect information about all loaded modules. Later a module Types

was added, which provided basic information about record types. However, Types was
not documented in the books about Oberon ([Rei91], [WiGu92]). In his dissertation
([Tem94]), J. Templ implemented an experimental version of Oberon for Sun
workstations, which treated modules, procedures, and record types as data allowing full
access to their components.

This report summarizes what is available in Modules and Types. It also describes a
reimplementation of a subset of Templ's metaprogramming system in the form of a
module Ref which is available for Windows Oberon and for PowerMac Oberon.

4

2. Module Modules

The Oberon System [WiGu89] provides dynamic linking and loading of modules. When
the execution of a command M.P is requested, module M is loaded, unless it has
already been loaded due to an earlier execution of a command from M, or because M

was imported by another already loaded module. A newly loaded module has to be
linked to the already loaded modules. In Oberon, linking is not an extra step but is done
by the loader which is therefore called a linking loader.

Module Modules is the implementation of this loader. It maintains a list of loaded
modules, which can be traversed to obtain information about a particular module. It
also provides procedures to load and unload modules on demand.

For historical reasons the interface of Modules is not quite the same in Windows
Oberon and PowerMac Oberon. Under Windows Oberon some of the following types
and variables are defined in module Kernel. Nevertheless the interface of Modules

should conceptionally look like this:

DEFINITION Modules;

CONST (* error codes *)

done = 0; fileNotFound = 1; invalidObjFile = 2; keyMismatch = 3;
notEnoughMemory = 4; modNotFound = 5; cmdNotFound = 6;
refCntNotZero = 7; cyclicImport = 8; corruptedObjFile = 9;

TYPE
ModuleName = ARRAY 32 OF CHAR;
Command = PROCEDURE;
Module = POINTER TO ModuleDesc;
ModuleDesc = RECORD (* descriptor of loaded modules *)

next-: ModuleName;
name-: Name; (* module name *)
refcnt-: LONGINT; (* reference count: number of importing modules *)
... (* further fields (platform dependent) *)

END ;

VAR
modules-: Module; (* head of module list *)
res: INTEGER; (* result code of operations below *)
importing: ModuleName; (* name of importing module if res # done *)
imported: ModuleName; (* name of imported module if res = keyMismatch *)

PROCEDURE Free (name: ARRAY OF CHAR; all: BOOLEAN);
PROCEDURE ThisCommand (m: Module; name: ARRAY OF CHAR): Command;
PROCEDURE ThisMod (name: ARRAY OF CHAR): Module;

END Modules.

5

State

 modules is the anchor of the list of loaded modules.

 res is the error code of the last operation and can be one of the values listed in the
constant declarations.

 importing and imported are defined if res # done. For res = keyMismatch, they
denote the importing and the imported modules, respectively. For other error codes,
only importing is defined and denotes the offending module.

Operations

 m := ThisMod(name) returns a pointer to the descriptor of module name. If this
module is not yet loaded, it will be dynamically loaded.

 cmd := ThisCommand(m, name) returns the command name of module m.
Commands are parameterless exported procedures which can be invoked
interactively by the user.

 Free(name, all) tries to unload module name. A module can only be unloaded if its
reference count is zero, i.e., if it is not imported by any other loaded module. If all is
TRUE, all modules which are (transitively) imported by name will be unloaded, if
their reference count is (or becomes) zero.

Differences between Windows Oberon and PowerMac Oberon

The differences in the command descriptors and module descriptors are summarized in
Table 1. A module descriptor stores information about the sections of a module (code,
data, run-time information, etc.). Under Windows Oberon these sections are
implemented as dynamic arrays. Under PowerMac Oberon the module descriptor
stores the addresses and the sizes of the sections. For example, entries contains the
address of the entries section and nofentries contains the number of entries. For every
loaded module there are the following sections (see also Fig. 2 in Appendix A.1):

 entries: under Windows Oberon, an array with the addresses of all exported
procedures; under PowerMac Oberon, an array with the offsets of all exported
procedures relative to the beginning of the module's code section.

 varEntries: under Windows Oberon, an array containing the addresses of all
exported variables. Under PowerMac Oberon exported variables are not stored as
separate entries.

 cmds (commands): an array with the names and addresses (Windows) or offsets
(PowerMac) of all commands.

 ptrTab (pointers): an array with the addresses (Windows) or offsets (PowerMac) of
all pointers in the global variable section. These pointers are used as root pointers
by the garbage collector.

 tdescs (typedescs): an array with the addresses of the type descriptors for all record
types declared in this module.

 imports: an array of pointers to the module descriptors of imported modules.
imports[0] refers to the descriptor of the module itself.

6

VAR modules: Module; VAR modules: Module;

END ;

 term: TerminationHandler

 init: BOOLEAN;

 refs: POINTER TO ARRAY OF CHAR;

 data, code: POINTER TO ARRAY OF CHAR;

 imports: POINTER TO ARRAY OF LONGINT;

 tdescs: POINTER TO ARRAY OF LONGINT;

 ptrTab: POINTER TO ARRAY OF LONGINT;

 cmds: POINTER TO ARRAY OF Cmd;

 entries: POINTER TO ARRAY OF LONGINT;

 varEntries: POINTER TO ARRAY OF LONGINT;

 key, sb: LONGINT;

 refcnt: LONGINT;

 name: Name;

 next: Module;

ModuleDesc = RECORD

Module = POINTER TO ModuleDesc;

TerminationHandler = PROCEDURE;

END ;

 traps-: LONGINT

 noftraps-: INTEGER;

 nofimps-, noftds-, nofptrs-,

 datasize-, blocksize-, refsize-: LONGINT;

 refs-: LONGINT;

 block-, PC-: LONGINT;

 imports-: LONGINT;

 typedescs-: LONGINT;

 pointers-: LONGINT;

 commands-: LONGINT;

 nofcmds-, entries-: LONGINT;

 consize-, codesize-, nofentries-,

 key-, SB-: LONGINT;

 refcnt-: INTEGER;

 name-: ModuleName;

 link-: Module;

ModuleDescriptor = RECORD

Module = POINTER TO ModuleDescriptor;

ModuleName = ARRAY 32 OF CHAR;

END ;

 adr: LONGINT

 name: Name;

Cmd = RECORD

Name = ARRAY 32 OF CHAR;

END ;

 offset-: INTEGER

 name-: CommandName;

CommandDesc = RECORD

CommandPtr = POINTER TO CommandDesc;

CommandName = ARRAY 24 OF CHAR;

Module Kernel under Windows Oberon Module Modules under PowerMac Oberon

Table 1. Module descriptors under Windows Oberon and PowerMac Oberon

 data: the constants and global variables of the module. Under PowerMac Oberon
this section starts at address block. SB (static base) denotes the separation line
between constants and global data, i.e., SB is the address of the first global variable
of the module.

 code (PC): the code of this module.

 refs: the reference information of this module (see Section 4).

Under Windows Oberon there are additional types and procedures for object
finalization [Tem94]. An object can be registered for finalization, which means that it is
notified prior to being deallocated by the garbage collector. This can be used to close
files or network connections. Furthermore it is possible to register a procedure that
shall be called when the module is unloaded.

 RegisterObject(obj, finalizer) registers procedure finalizer to be called before the
object obj is reclaimed by the garbage collector.

 InstallTermHandler(term) installs the procedure term to be called when the module
containing this call of InstallTermHandler is unloaded.

7

Under PowerMac Oberon, there are additional procedures for maintaining shared
libraries (dynamic link libraries, DLLs):

VAR
ThisLib-: PROCEDURE (name: ARRAY OF CHAR; ppc: BOOLEAN): LONGINT;
ThisSym-: PROCEDURE (conn: LONGINT; name: ARRAY OF CHAR): LONGINT;

 id := ThisLib(n, ppc) loads the shared library with the name n and returns its
identifier id. The parameter ppc specifies if the instruction set architecture of the
library is the PowerPC architecture or the 680x0 architecture. ppc should normally
be TRUE.

 adr := ThisSym(lib, n) looks up the symbol with the name n in the shared library lib

that was loaded by ThisLib. If found, the address of the symbol is returned. ThisSym

can be used to load the address of an operating system procedure into an Oberon
procedure variable:

VAR
NewPtr: PROCEDURE (size: LONGINT): LONGINT;
lib, adr: LONGINT;

...
lib := Modules.ThisLib("InterfaceLib", TRUE);
adr := Modules.ThisSym(lib, "NewPtr");
SYSTEM.GET(adr, NewPtr)

The same result can be obtained in a simpler way by calling

Sys.Assign("NewPtr", SYSTEM.ADR(NewPtr))

Under Windows Oberon dynamic link libraries can be loaded using module Kernel:

PROCEDURE LoadLibrary (file: ARRAY OF CHAR): LONGINT;
PROCEDURE GetAdr (lib: LONGINT; sym: ARRAY OF CHAR; VAR adr: LONGINT);

 lib := LoadLibrary(n) loads the dynamic link library with the name n and returns its
identifier in lib.

 GetAdr(lib, n, adr) looks up the symbol with the name n in the dynamic link library lib

that was loaded by LoadLibrary. If found, the address of the symbol is returned in
adr. GetAdr can be used to load the address of a DLL function into an Oberon
procedure variable. Note, that for some Windows API functions there exist two
versions, one that accepts Unicode parameters and one for ASCII parameters. The
former have a "W" appended to their name, the latter an "A" (hence "FindFirstFileA"
and not "FindFirstFile" in the following example).

VAR
FindFirstFile: PROCEDURE (filename: LONGINT; data: LONGINT): LONGINT;
lib: LONGINT;

...
lib := Kernel.LoadLibrary("Kernel32");
Kernel.GetAdr(mod, "FindFirstFileA", SYSTEM.VAL(LONGINT, FindFirstFile));

8

Examples

In order to find the module that contains a certain program counter value, one can
traverse the list of modules. As this involves some platform-dependent fields of the
module descriptors, the implementation varies between Windows and Power
Macintosh. Therefore it is a good idea to use the procedure Ref.OpenProc(pc, r) (see
Section 4) to find the procedure that contains the program counter pc.

m := Kernel.modules; (* code for Windows Oberon *)
WHILE (m # NIL) & ((SYSTEM.ADR(m.code^) > pc)
OR (pc > SYSTEM.ADR(m.code^) + LEN(m.code^))) DO

m := m.next
END ;

m := Modules.modules; (* code for PowerMac Oberon *)
WHILE (m # NIL) & ((pc < m.PC) OR (pc > m.PC + m.codesize*4)) DO

m := m.link
END ;

In order to call a command P from module M one can use the following code:

VAR m: Modules.Module; p: Modules.Command;
...
m := Modules.ThisMod("M");
p := Modules.ThisCommand(m, "P");
p (* call M.P *)

9

3. Module Types

Module Types provides information about record types. This information is obtained
from the type descriptors of which there is one for every record type (see Appendix
A.2). More detailed information about records can be obtained using module Ref (see
Section 4).

Interface

DEFINITION Types;
IMPORT SYSTEM, Modules;

TYPE
Type = POINTER TO TypeDesc;
TypeDesc = RECORD

name: ARRAY 32 OF CHAR; (* name of the (record) type *)
module: Modules.Module (* module in which the type is declared *)

END ;

PROCEDURE TypeOf (o: SYSTEM.PTR): Type;
PROCEDURE This (mod: Modules.Module; name: ARRAY OF CHAR): Type;
PROCEDURE NewObj (VAR o: SYSTEM.PTR; t: Type);
PROCEDURE LevelOf (t: Type): INTEGER;
PROCEDURE BaseOf (t: Type; level: INTEGER): Type;

END Types.

 t := TypeOf(o) returns the dynamic type of the record pointed to by o. The pointer o

must not be NIL.

 t := This(mod, name) returns the Type of the record type name declared in module
mod, or NIL, if this type does not exist.

 NewObj(o, t) allocates a record of type t on the heap and returns a pointer to that
record in o. If the actual parameter corresponding to o is declared as POINTER TO
T, t must be equal to T or an extension of it.

 lev := LevelOf(t) returns the extension level of the specified record type. Record
types that do not extend other types have extension level 0. If T1 directly extends
T0, the level of T1 is the level of T0 plus 1.

 t0 := BaseOf(t1, lev) returns the base type of t1 that has extension level lev.

Examples

The most frequently used operations of Types are TypeOf, This and NewObj. They can
be used to convert a type to a type name and vice versa. This is necessary, for
example, when objects of arbitrary types have to be written to a file and read in again.
During reading the objects have to be allocated with their correct types. In order to be
able to do that, the type name of every object must occur in front of the object's data.
This type name can be used to allocate an object of the appropriate type. The following
two procedures ([Tem94]) write and read arbitrary objects whose type is derived from a

10

type Object. We assume that type Object supports a Load and a Store message to
read and write the object's data:

PROCEDURE WriteObj (VAR r: Files.Rider; obj: Object);
VAR t: Types.Type;

BEGIN
IF obj = NIL THEN WriteString(r, "")
ELSE t := Types.TypeOf(obj);

WriteString(r, t.module.name); WriteString(r, t.name); obj.Store(r)
END

END WriteObj;

PROCEDURE ReadObj (VAR r: Files.Rider; VAR obj: Object);
VAR name: ARRAY 32 OF CHAR; m: Modules.Module; t: Types.Type;

BEGIN
ReadString(r, name);
IF name = "" THEN obj := NIL
ELSE m := Modules.ThisMod(name);

ReadString(r, name); t := Types.This(m, name);
Types.NewObj(t, obj); obj.Load(r)

END
END ReadObj;

Module Types can also be used to perform some other interesting operations that are
not available in the Oberon language. Let's assume the following declarations:

TYPE
Object = POINTER TO ObjectDesc;
ObjectDesc = RECORD END;

VAR
x, y: Object;
t, t1: Types.Type;
lev, lev1: INTEGER;

Cloning an object x. Assume that we do not know the dynamic type of x. We want to
have a clone y with the same dynamic type and the same contents as x. We cannot
use NEW(y) because that would set the dynamic type of y to Object. The following
code does the job:

Types.NewObj(y, Types.TypeOf(x));
x.CopyFieldsTo(y)

Does the variable x have the dynamic type T? The type test x IS T finds out if the
dynamic type of x is at least T. However, the test also returns TRUE if the dynamic type
is an extension of T. If we want to know whether the dynamic type is exactly M.T we
can use the following code:

11

t := Types.TypeOf(x);
IF (t.module.name = "M") & (t.name = "T") THEN ... END

Is the dynamic type of x equal to the static type of x? This test may be necessary if an
operation wants to treat extended objects in a different way than original objects.

IF Types.LevelOf(Types.TypeOf(x)) = 0 THEN ... END

Are the dynamic types of x and y derived from the same base type?

t := Types.TypeOf(x); lev := Types.LevelOf(t);
t1 := Types.TypeOf(y); lev1 := Types.LevelOf(t1);
IF Types.BaseOf(t, lev - 1) = Types.BaseOf(t1, lev1 - 1) THEN ... END

4. Module Ref

Module Ref can be used to obtain information about the procedures, record types, and
variables of a module. For example, it is possible to access the names, types and
components of these items at run time. For variables it is also possible to read and
write their values.

4.1 Riders

All information is accessible via riders. A rider is a cursor that iterates over sequences
of variables, procedures, types, or other items. The general pattern for using a rider r is

Ref.Open...(..., r);
WHILE r.mode # Ref.End DO

...
r.Next

END

At any time the rider contains information about the item on which it is positioned. A
rider can be opened on data (global variables, local variables, heap) or on a module's
list of procedures or record types.

global variables OpenVars(module, r) sets r to the first global variable of the module

local variables OpenStack(info, r) sets r to the topmost stack frame

heap OpenPtr(p, r) sets r to the first record field or array element to which p refers

procedures OpenProcs(module, r) sets r to the first procedure of the module

record types OpenTypes(module, r) sets r to the first record type of the module

Program data is organized hierarchically, e.g., the stack is a sequence of stack frames,
which are sequences of variables, which may be sequences of record fields and so on.
The following grammar shows this structure.

12

Stack = {Frame}. accessible via OpenStack

Frame = {Variable}.
Variable = simpleVar | RecordVar | ArrayVar.
RecordVar = {Field}.
ArrayVar = {Elem}.
Field = Variable.
Elem = Variable.

Globals = {Variable}. accessible via OpenVars

PointerBase = RecordVar | ArrayVar. accessible via OpenPtr

Procedure = {Proc}. accessible via OpenProcs

Proc = {Variable}.

Types = {RecordType}. accessible via OpenTypes

RecordType = {Field}.

When a rider is positioned on a composite item it is possible to zoom into this item and
iterate over its elements. For example, to iterate over the variables of the second frame
on the stack (i.e., the variables of the caller of the currently active procedure) one does
the following:

Ref.OpenStack(NIL, r); (* r is on the frame of currently active procedure *)
r.Next; (* r is on the caller's frame *)
r.Zoom(r) (* r is on the first variable of the caller's frame *)

When a rider was opened on data (using OpenVars, OpenStack, or OpenPtr) and is
currently positioned on a simple variable (i.e., not a record or an array), the value of this
variable can be read or modified using procedures like r.ReadInt or r.WriteInt. If a rider
was opened on the list of procedures or record types there is no data to be read or
written, so the read and write procedures must not be called.

4.2 Interface

DEFINITION Ref;

IMPORT SYSTEM, Types;

CONST
(* item forms *)
None = 0; Byte = 1; Bool = 2; Char = 3; SInt = 4; Int = 5; LInt = 6;
Real = 7; LReal = 8; Set = 9; String = 10; NilTyp = 11; NoTyp = 12;
Pointer = 13; Procedure = 14; Array = 15; Record = 16; DynArr = 17;

(* item modes *)
End = 0; Var = 1; VarPar = 2; Elem = 3; Fld = 4; Frame = 5; Proc = 6; Type = 7;

13

TYPE
ProcVar = PROCEDURE;

Rider = RECORD (* see Table 2 and 3 *)
name: ARRAY 32 OF CHAR;
mode, form: SHORTINT;
idx, off, len: LONGINT;
mod: ARRAY 32 OF CHAR;
level: SHORTINT;
PROCEDURE (VAR r: Rider) Next;
PROCEDURE (VAR r: Rider) Zoom (VAR sub: Rider);
PROCEDURE (VAR r: Rider) Adr (): LONGINT;
PROCEDURE (VAR r: Rider) Type (): Types.Type;
PROCEDURE (VAR r: Rider) SetTo (idx: LONGINT);

PROCEDURE (VAR r: Rider) Read (VAR ch: CHAR);
PROCEDURE (VAR r: Rider) ReadBool (VAR b: BOOLEAN);
PROCEDURE (VAR r: Rider) ReadInt (VAR i: INTEGER);
PROCEDURE (VAR r: Rider) ReadLInt (VAR li: LONGINT);
PROCEDURE (VAR r: Rider) ReadLReal (VAR lr: LONGREAL);
PROCEDURE (VAR r: Rider) ReadProc (VAR p: ProcVar);
PROCEDURE (VAR r: Rider) ReadPtr (VAR p: SYSTEM.PTR);
PROCEDURE (VAR r: Rider) ReadReal (VAR x: REAL);
PROCEDURE (VAR r: Rider) ReadSInt (VAR si: SHORTINT);
PROCEDURE (VAR r: Rider) ReadSet (VAR s: SET);
PROCEDURE (VAR r: Rider) ReadString (VAR str: ARRAY OF CHAR);

PROCEDURE (VAR r: Rider) Write (ch: CHAR);
PROCEDURE (VAR r: Rider) WriteBool (b: BOOLEAN);
PROCEDURE (VAR r: Rider) WriteInt (i: INTEGER);
PROCEDURE (VAR r: Rider) WriteLInt (li: LONGINT);
PROCEDURE (VAR r: Rider) WriteLReal (lr: LONGREAL);
PROCEDURE (VAR r: Rider) WriteProc (p: ProcVar);
PROCEDURE (VAR r: Rider) WritePtr (p: SYSTEM.PTR);
PROCEDURE (VAR r: Rider) WriteReal (x: REAL);
PROCEDURE (VAR r: Rider) WriteSInt (si: SHORTINT);
PROCEDURE (VAR r: Rider) WriteSet (s: SET);
PROCEDURE (VAR r: Rider) WriteString (str: ARRAY OF CHAR);

END ;

ExceptionInfo = ...; (* machine state: system dependent *)

PROCEDURE OpenVars (mod: ARRAY OF CHAR; VAR r: Rider);
PROCEDURE OpenStack (inf: ExceptionInfo; VAR r: Rider);
PROCEDURE OpenPtr (p: SYSTEM.PTR; VAR r: Rider);
PROCEDURE OpenProcs (mod: ARRAY OF CHAR; VAR r: Rider);
PROCEDURE OpenTypes (mod: ARRAY OF CHAR; VAR r: Rider);
PROCEDURE PC (mod, name: ARRAY OF CHAR): LONGINT;
PROCEDURE OpenProc (pc: LONGINT; VAR r: Rider);

END Ref.

14

A Rider is a cursor that iterates over a sequence of variables, procedures, record types,
and other items. Its fields show the attributes of the item on which it is currently
positioned. Field mode indicates the item kind (Table 2).

Type record type
Proc procedure
Frame stack frame
Fld record field
Elem array element
VarPar variable parameter
Var local variable, global variable, or value parameter
mode currently positioned on

Table 2. Field mode of a Rider

The meaning of the other fields depends on the rider's mode (Table 3).

level --- --- extension lev. of record --- --- ---

len --- of array --- of procedure of procedure ---

idx --- in array --- of procedure of procedure ---

off in frame in array in record in code in code ---

form of variable of element of field --- --- ---

mod declaring module --- declaring module decl. module decl. module decl. module

name of variable of array of field of procedure of procedure of type

Var, VarPar Elem Fld Frame Proc Type

Table 3. Fields of a Rider (depending on the mode of the Rider)

If a rider is positioned on an element of an array variable, the field name shows the
name of the array variable. Information about the module declaring an array type is not
available in the reference information (see below), so that the field mod is undefined for
array elements.

The type ExceptionInfo captures the machine state at the time of a trap. It is machine
dependent and has a different form for Windows and for the Power Macintosh.

Operations

 OpenVars(mod, r) sets the rider r to the first global variable of module mod. If there
are no global variables, r.mode = End. If module mod does not exist, r.mode = End

and r.mod = "".

 OpenStack(inf, r). If inf = NIL the rider r is set to the stack frame of the procedure
that called OpenStack. If inf # NIL, it describes the machine state at the time of a
run-time exception (trap). The rider r is set to the stack frame of the procedure in
which the trap occurred.

 OpenPtr(p, r) sets the rider r to the first field of the record pointed to by p. If p = NIL
then r.mode = End.

 OpenProcs(mod, r) sets the rider r to the first procedure of module mod. If there are
no procedures, r.mode = End. If module mod does not exist, r.mode = End and
r.mod = "".

15

 OpenTypes(mod, r) sets the rider r to the first record type of module mod. If there
are no record types, r.mode = End. If module mod does not exist, r.mode = End and
r.mod = "".

 pc := PC(mod, name) returns the absolute start address of the procedure name

declared in module mod. If there is no such procedure, pc = 0.

 OpenProc(pc, r) sets the rider r to the procedure that contains the (absolute)
program counter value pc. If such a procedure could not be found, r.mode = End,
otherwise the fields of r are set appropriately.

 r.Next advances the rider r to the next item (variable, array element, record field,
stack frame, procedure, or record type). If r was already positioned on the last item,
r.mode is set to End.

 r.Zoom(sub). If r is positioned on a composite item, a new rider sub is set to the first
component of the composite according to the following table:

r.mode r.form sub.mode

Var, VarPar, Elem, Fld Record, Pointer to Record Fld

Var, VarPar, Elem, Fld Array, DynArr, Pointer to Array or DynArr Elem

Type --- Fld

Proc, Frame --- Var or VarPar

 a := r.Adr() returns the address of the current item (variable, parameter, record field,
or array element).

 t := r.Type() returns the type of the current item if this item is of a record type,
otherwise the result is undefined. If r.mode = Type, r.Type returns the description of
this record type. If r.form = Record, r.Type returns the description of the item's
record type.

 r.SetTo(i). If r is positioned on an element of an array (r.mode = Elem), it is set to
the i-th element of that array. If it is positioned on the fields of a record type T

(r.mode = Fld), it is set to the first field of the i-th extension level of T.

 r.ReadX. If r.mode IN {Var, VarPar, Fld, Elem} and if r (or the rider from which it was
zoomed) was opened with OpenVars, OpenStack or OpenPtr, the value of the
current item can be read with the ReadX procedure that matches the form of the
item (i.e., r.ReadInt if r.form = Int).

 r.WriteX. If r.mode IN {Var, VarPar, Fld, Elem} and if r (or the rider from which it was
zoomed) was opened with OpenVars, OpenStack or OpenPtr, the value of the
current item can be written with the WriteX procedure that matches the form of the
item.

Examples

The following procedure P(s) prints the values of all variables, whose names appear in
the argument string s (e.g., s = "x y z"). The variables are assumed to be local to the
caller of P.

16

PROCEDURE P (s: ARRAY OF CHAR);
VAR n: ARRAY 32 OF CHAR; r, r1: Ref.Rider;

BEGIN
Ref.OpenStack(NIL, r); (* r is positioned on the stack frame of P *)
r.Next; (* r is positioned on the frame of P's caller *)
FOR all names n in s DO

r.Zoom(r1); (* r1 is positioned on the first local variable of the caller *)
WHILE (r1.mode # Ref.End) & (r1.name # n) DO r1.Next END;
IF r1.mode # Ref.End THEN PrintValue(r1) END

END
END P;

PROCEDURE PrintValue (VAR r: Ref.Rider);
VAR i: INTEGER; re: REAL; ...

BEGIN
CASE r.form OF

Ref.Int: r.ReadInt(i); Out.Int(i, 0)
| Ref.Real: r.ReadReal(re); Out.Real(re, 0)
| ...
END

END PrintValue;

The following procedure prints the names and values of all fields of a record variable
rec globally declared in module M.

PROCEDURE P;
VAR r: Ref.Rider;

BEGIN
Ref.OpenVars("M", r);
WHILE (r.mode # Ref.End) & (r.name # "rec") DO r.Next END;
IF r.mode # Ref.End THEN r.Zoom(r);

WHILE r.mode # Ref.End DO
Out.String(r.name); Out.String(" = "); PrintValue(r);
r.Next

END
END

END P;

The following procedure prints the names of all procedures of module M together with
the names of their local variables:

17

PROCEDURE P;
VAR r, r1: Ref.Rider;

BEGIN
Ref.OpenProcs("M", r);
WHILE r.mode # Ref.End DO

Out.String(r.name); Out.Ln; (* procedure name *)
r.Zoom(r1);
WHILE r1.mode # Ref.End DO

Out.String(r1.name); Out.Ln; (* variable name *)
r1.Next

END;
r.Next

END
END P;

The following code fragment shows how to print a string variable:

VAR r, r1: Ref.Rider; s: ARRAY 64 OF CHAR;
...
ASSERT((r.mode = Ref.Var) & (r.form = Ref.Array));
r.Zoom(r1); (* r1 is used for a lookahead! *)
IF r1.form = Ref.Char THEN r.ReadString(s); Out.String(s) END

The following code fragment prints the name of the procedure containing the address
adr.

Ref.OpenProc(adr, r);
IF r.mode # Ref.End THEN Out.String(r.mod); Out.Char("."); Out.String(r.name) END

4.3 Reference information

At run time, the memory (global variables, stack, heap) is an unstructured sequence of
bytes. In order to interpret it correctly one needs the symbol tables in which the names,
types, addresses, and sizes of the variables are stored. The symbol table of a module
is a data structure of the compiler and is usually discarded after a compilation.
However, the compiler may also write (parts of) the symbol table to a file. This is called
the reference information of a module. Most Oberon compilers generate reference
information as an appendix to the object file of a module.

The original Oberon compiler [WiGu92] as well as the OP2 compiler [Cre90] generate
only a partial reference information in which structured variables are not described. We
extended OP2 according to the suggestions in [Tem94] so that the reference
information contains a complete description of all procedures and record types
declared in a module together with their structures. The reference information is
described by the following grammar (a name with an asterisk denotes a number in
variable length format [GPHT91]; a name ending with "1" denotes a one byte number;
names in italic denote constants):

18

RefInfo = {Procedure} {Record}.
Procedure = ProcTag offset* PowerMacInfo Name {Variable}.
Record = RecTag tdadr* Name {Field} 0X.
Variable = (Var | VarPar) Object.
Object = Name offset* Type.
Field = Object.
Type = Byte | Bool | Char | SInt | Int | LInt | Real | LReal

| Set | String | Nil | NoTyp

| Pointer Type
| Proc key*
| Array length* elemsize* Type
| DynArray elemsize* Type
| Rec mod1 tdadr*.

Name = char {char} 0X.
PowerMacInfo = -- only on the Power Macintosh

fsize* psize* ralloc* falloc* calloc* isleaf1.

The reference information can be regarded as the linearized and simplified symbol
table of a module. There are just two different kinds of objects in the reference
information: procedures (Procedure) and record types (Record). Global variables are
treated as local variables of the module body, which is regarded as a procedure with
the special name "$$".

Record types consist of a reference to their type descriptor, a name, and a list of record
fields. Each record field consists of a name, an offset within the record, and a type. The
type consists of a form and optional attributes: pointer types have a base type;
procedure types have a key (a fingerprint of their parameter types to be used as a
version key); arrays have a length, an element size and an element type; open arrays
have an element size, and an element type; record types are described by a module
number and a reference to their type descriptor. The module number is used locally
within the module m to which the reference information belongs. A module number of 0
means m itself; any module number n > 0 means the n-th module imported by module
m. How exactly to convert the pair (mod tdadr) into a type descriptor is system
dependent. Under Windows Oberon tdadr is an index into the table varEntries of
module mod. The referenced entry contains the address of the type descriptor address
in the global data section of module mod. Under PowerMac Oberon tdadr is the offset
of the type descriptor address in the global data section of module mod.

Procedures consist of their offset in the code section of the module (start offset under
Windows; end offset under PowerMac), a name, and a list of local variables and formal
parameters. Value parameters are treated like local variables (mode = Var), reference
parameters have mode = VarPar. Under PowerMac Oberon there is additional
information about procedures such as the frame sizes for variables and parameters
(fsize, psize), the number of general purpose registers (ralloc), floating point registers
(falloc), and bits in the condition code register (calloc) used by the procedure, as well
as an indication if the procedure is a leaf procedure (isleaf).

When a module is loaded, its reference information is read into memory. A rider is then
simply a link between the reference section and the data of a module. When the rider is
advanced to the next item in the reference section it is also advanced to the next data

19

item in memory so that the corresponding information is kept synchronized (Figure 1).

description of a description of b... ...

Reference Section

Rider

value of a value of b... ...

Data

Figure 1. A rider as a link between the reference section and the data of a module

20

5. Applications

5.1 A Post-Mortem Debugger

A post-mortem debugger is a program that is invoked when another program
terminates with a trap. Its responsibility is to show the machine state in a
human-readable form, i.e., in terms of the program's source code. At minimum, it has to
show the currently active procedures and the values of their local variables. In the
original Oberon system this was done by the so-called trap handler. Its major
shortcoming was that it only showed the values of unstructured variables whereas the
contents of arrays, records and pointers could not be inspected (the reference
information for structured variables was missing). Since we now have the full reference
information, we re-implemented the trap handler so that it shows the values of all

variables.

Reference Elements

The major remaining problem was how to present structured variables to the user. The
common solution in debuggers is to show them in separate windows. We decided not
to use this solution but to show all variables in the same window and to expand
structured variables "in place". A mechanism for "zooming" into structures was already
available in the Oberon system in the form of fold elements [MöKo96]. We extended the
fold elements so that they now include also relevant reference information. These
extended elements were called reference elements. Like fold elements, reference
elements occur in pairs and are shown as small triangles behind the name of a
structured variable. In collapsed state () they do not enclose text whereas in
expanded state (i = 17) they enclose a list of variables with their names and values.
A click on one of the elements changes their state from collapsed to expanded and vice
versa. Consider the following example:

VAR
i: INTEGER;
rec: RECORD x, y: CHAR END;
arr: ARRAY 3 OF INTEGER;
ptr: POINTER TO RECORD a, b: INTEGER END;

The new trap handler shows the values of these variables in the following form
(collapsed on the left-hand side, expanded on the right-hand side):

i = 17 i = 17
rec = rec =

x = "a"
y = "b"

arr = arr =
1 = 10
2 = 11
3 = 12

ptr = ^ ptr = ^
a = 4
b = 5

21

Reference elements are implemented in module RefElems which also provides a
procedure WriteRider to generate the contents of expanded elements.

DEFINITION RefElems;
IMPORT FoldElems, Texts, Ref;

TYPE
Elem = POINTER TO ElemDesc;
ElemDesc = RECORD (FoldElems.ElemDesc) END;

PROCEDURE HandleElem (e: Texts.Elem; VAR m: Texts.ElemMsg);
PROCEDURE WriteRider (VAR w: Texts.Writer; VAR r: Ref.Rider; ind: INTEGER);

END RefElems.

ElemDesc extends the standard FoldElems and adds some fields pertinent to the
reference information for the structured variable to which the element refers. If this
variable is a pointer, the element also stores a copy of that pointer in order to make
sure that the referenced object is not reclaimed by the garbage collector.

Operations

 HandleElem is the message handler of a RefElem.

 WriteRider(w, r, i) writes the sequence of items (variables, fields, elements) on
which the rider r is positioned to the writer w. It uses an indentation of i tabs. The list
is written as a sequence of pairs <name, value> where the value of structured items
is again represented by a pair of collapsed RefElems.

A sketch of the procedure WriteRider should help to understand how it works. The rider
r is used to iterate over all items of the sequence on which it is positioned and to write
them to the writer w. If a structured item is encountered (record, array, pointer) a pair of
RefElems is inserted, which hide the item's structure from the user. By clicking on these
elements they get expanded and reveal the item's structure.

PROCEDURE WriteRider* (VAR w: Texts.Writer; VAR r: Ref.Rider; ind: INTEGER);
VAR si: SHORTINT; i, j: INTEGER; li: LONGINT; re: REAL; lr: LONGREAL;

ch: CHAR; b: BOOLEAN; s: SET; proc: Ref.ProcVar; r1: Ref.Rider; p: S.PTR;
str: ARRAY 1024 OF CHAR;

...

BEGIN
WHILE r.mode # Ref.End DO

WriteLn;
FOR i := 1 TO indent DO WriteChar(09X) END;
IF r.mode = Ref.Elem THEN WriteInt(r.idx) ELSE WriteString(r.name) END;
WriteString(" = ");
CASE r.form OF

...
| Ref.Int: r.ReadInt(i); WriteInt(i)
| Ref.LInt: r.ReadLInt(li); WriteInt(li)

22

| Ref.Real: r.ReadReal(re); WriteReal(re)
...

| Ref.Pointer:
r.ReadPtr(p);
IF p = NIL THEN WriteString("NIL")
ELSE WriteString("^ "); ... (* insert RefElems containing the record fields *)

END
...

| Ref.Array, Ref.DynArr:
r.Zoom(r1);
IF r1.form = Ref.Char THEN

r.ReadString(str); WriteChar('"'); WriteString(str); WriteChar('"')
ELSE ... (* insert RefElems containing the array elements *)

END
END;
r.Next

END
END WriteRider;

Showing the Global Variables of a Module (System.State)

As in the original Oberon system, the command

System.State (name | "^")

opens a viewer displaying the global variables of the specified module. The
implementation sets a rider to the global variables and uses RefElems.WriteRider to
write them to a viewer.

PROCEDURE State;
VAR modName: ARRAY 32 OF CHAR; r: Ref.Rider; t: Texts.Text;

BEGIN
In.Open; In.Name(modName);
... Open a viewer v with an empty text t ...
Texts.WriteString(w, "MODULE "); Texts.WriteString(w, modName);
Ref.OpenVars(modName, r);
RefElems.WriteRider(w, r, 1);
Texts.Append(t, w.buf)

END State;

23

Showing the Local Variables of all Active Procedures (Trap viewer)

When a trap occurs, a viewer is opened showing information about the active
procedures, their variables and parameters. Again, RefElems are used for representing
the values of record, array, and pointer variables. A minor problem are records and
arrays on the stack: As the stack is unrolled after a trap, they usually do not exist any
more when the user clicks on the RefElem. Therefore the expanded view of their
RefElems has to be generated before the stack is unrolled. For the same reason,
pointers on the stack have to be copied to RefElems so that the garbage collector
cannot remove the referenced objects after the stack was unrolled.

The contents of the trap viewer can be generated in the following way (exceptionInfo is
a system-dependent data structure containing the register values at the time of a trap.
It also specifies the stack that contains the relevant local variables):

Ref.OpenStack(exceptionInfo, r);
WHILE r.mode # Ref.End DO

Texts.WriteLn(w); Texts.WriteString(w, r.mod);
Texts.Write(w, "."); Texts.WriteString(w, r.name);
...
r.Zoom(r1); RefElems.WriteRider(w, r1, 1);
Texts.Append(t, w.buf);
r.Next

END

5.2 A Database Interface

Databases allow users to perform queries on the stored data. Some databases even
allow queries to be executed from within a program. That means that the programming
language has to be extended so that query statements can be expressed or that a
preprocessor must be used to specify the query in a preprocessor language.

Using module Ref, one can specify such queries as strings and pass them to a
procedure that analyses the strings and executes the statements described by them.
For example, one can write

conn.Prepare("CREATE TABLE Persons FOR Person")

without needing a language extension nor a preprocessor. We implemented a module
EmbeddedSQL [Ste96] that provides access to ODBC databases [ODBC94] for
Windows Oberon.

DEFINITION EmbeddedSQL;

CONST
(* return codes *)
InvHandle = -2; Error = -1; Success = 0; SuccessWithInfo = 1;
NoDataFound = 100;

24

TYPE
Connection = POINTER TO ConnectionD;
ConnectionD = RECORD

ret: INTEGER; (* return code of last operation *)
PROCEDURE (c: Connection) Prepare (sqlStr: ARRAY OF CHAR): Statement;

END ;
Statement = POINTER TO StatementD;
StatementD = RECORD

ret: INTEGER; (* return code of last operation *)
conn-: Connection; (* the connection on which the statement is executed *)
PROCEDURE (s: Statement) Execute;
PROCEDURE (s: Statement) Fetch (): BOOLEAN;
PROCEDURE (s: Statement) IsNull (name: ARRAY OF CHAR): BOOLEAN;
PROCEDURE (s: Statement) SetNull (name: ARRAY OF CHAR);

END ;

PROCEDURE Open (source, user, passwd: ARRAY OF CHAR): Connection;

END EmbeddedSQL.

Types

Connection represents a communication channel between the application and the
database. Requests are issued and responses are returned via this connection. ret

indicates the success of the last operation.

Statement represents an SQL statement that has been prepared for execution via
connection conn. ret indicates the success of the last operation.

Operations

 conn := Open(source, user, password) opens a connection to the database with the
given user identification and password.

 stat := conn.Prepare(s) prepares an SQL statement (specified by the string s) for
execution.

 stat.Execute executes the previously prepared SQL statement.

 done := stat.Fetch. If the execution of an SQL statement results in a table (i.e., a
sequence of records), Fetch retrieves one row of the table (i.e., one record of this
sequence) at a time and stores it in the variable(s) specified in the statement. If
there are no more rows to retrieve, done becomes FALSE.

 b := stat.IsNull(n) returns TRUE if the variable specified by the name n contains a
null value. Null values are special values which indicate that the value is not valid or
present. As this cannot be expressed by a legal value in programming languages
(e.g., 0 for integer variables, or "" for string variables), IsNull is necessary to check
for the validity of a value.

 stat.SetNull(n) makes the variable specified by the name n contain a null value.

25

Embedded SQL and Oberon

For data transfer between the database and the application SQL statements use
ordinary Oberon variables. In order to distinguish these variables from names that are
used within the database (e.g. names of tables and columns), they are preceded by a
colon. In the SQL statement

"SELECT firstName FROM Persons WHERE age > :minAge INTO :name"

minAge and name are Oberon variables. minAge is an input variable, and name is an
output variable.

Variables can be either scalar or of a record type. When record variables are specified,
they are implicitly expanded to their fields. The statement

"SELECT * FROM Persons INTO :person"

is therefore equivalent to

"SELECT * FROM Persons INTO :person.firstName, :person.lastName, :person.age"

Examples

We declare the type Person that will be used to represent persons.

TYPE
Person = RECORD

firstName, lastName: ARRAY 32 OF CHAR;
age: INTEGER

END ;

VAR
conn: EmbeddedSQL.Connection;
stat: EmbeddedSQL.Statement;

BEGIN
conn := EmbeddedSQL.Open(source, user, password);
stat := conn.Prepare("CREATE TABLE Persons FOR Person");
stat.Execute();

END

After opening the connection, we create a table for the persons that we will later insert.
The table will consist of as many columns (with appropriate types) as there are fields in
the record type Person. The record type can be qualified with the module in which the
type is declared.

In order to insert data into the table, we prepare an INSERT statement in which we
specify the variables containing the values to be inserted (firstName, lastName, age).
These variables are preceded by a colon (which distinguishes them from database

26

identifiers for tables and columns). Then we assign values to the variables and consider
null values (i.e., values that should remain undefined). When we finally execute the
statement the values from the variables are taken and transferred into the database.
Note that the statement - once it has been prepared - can be executed several times
with different values.

PROCEDURE Insert;
VAR firstName, lastName: ARRAY 32 OF CHAR; age: INTEGER;

BEGIN
In.Open;
stat :=

conn.Prepare("INSERT INTO Persons VALUES (:firstName, :lastName, :age)");
REPEAT

In.Name(firstName); In.Name(lastName); In.Int(age);
IF firstName = "NULL" THEN stat.SetNull("firstName") END ;
IF lastName = "NULL" THEN stat.SetNull("lastName") END ;
IF In.Done THEN stat.Execute() END

UNTIL ~In.Done
END Insert;

In order to retrieve all persons older than minAge we can use the following procedure
Select. After preparing the SELECT statement and assigning values to the input
variables (in this case minAge), we execute the statement and fetch the resulting data
row by row. As the table is defined for the type Person, every row is a record of type
Person. If we were only interested in the columns firstName and lastName, we could
use a SELECT statement like "SELECT firstName, lastName FROM Persons WHERE
age >= :minAge INTO :person.firstName, :person.lastName".

PROCEDURE Select;
VAR person: Person; minAge: INTEGER;

BEGIN
stat := conn.Prepare

("SELECT * FROM Persons WHERE age >= :minAge INTO :person");
In.Open; In.Int(minAge);
stat.Execute();
WHILE stat.Fetch() DO

Out.Ln;
IF stat.IsNull("person.firstName") THEN Out.String("NULL")
ELSE Out.String(person.firstName)
END ;
Out.String(", ");
IF stat.IsNull("person.lastName") THEN Out.String("NULL")
ELSE Out.String(person.lastName)
END ;
Out.String(", ");
IF stat.IsNull("person.age") THEN Out.String("NULL")
ELSE Out.Int(person.age, 0)
END

END ;
END SelectAll;

27

Implementation

The analysis of the SQL commands in the strings is implemented using module Ref.
Any variable preceded by a colon is looked up in the local scope of the procedure that
issued the SQL statement (the local scope contains the local variables, as well as the
parameters of the procedure). The addresses of such variables are then passed to
low-level modules of the ODBC database.

5.3 A Heap Inspector

Inspector is a tiny module that can be used to browse data on the heap. It was
implemented using module Ref and is similar to the post-mortem debugger described
in Section 5.1.

DEFINITION Inspector;
IMPORT SYSTEM;

PROCEDURE InspectPointer (p: SYSTEM.PTR);
PROCEDURE InspectElem;
PROCEDURE InspectViewer;
PROCEDURE InspectDirectory;
PROCEDURE InspectSyntaxTree;

END Inspector.

Operations

 InspectPointer(p) opens a viewer with the fields of the record pointed to by p.

 InspectElem opens a viewer with the record fields of the selected text element.

 InspectViewer opens a viewer with the record fields of the star-marked viewer.

 InspectDirectory dirName opens a viewer displaying the Directories.Directory
structure of the directory dirName.

 InspectSyntaxTree modName compiles the module modName and opens a viewer
with the syntax tree of the module.

5.4 A General Output Module

In Oberon there is no general output procedure like in Pascal. Instead there are
individual output procedures for every basic type, such as Out.Int for integers or
Out.Char for characters. Writing a message to the screen can therefore be quite
tedious and unreadable, for example:

Out.String("Frame: X = "); Out.Int(f.X, 0); Out.String(", Y = "); Out.Int(f.Y, 0)
Out.String(", W = "); Out.Int(f.W, 0); Out.String(", H = "); Out.Int(f.W, 0);
Out.Ln

Module Put allows programmers to write such output statements in a more concise and
readable way, for example:

28

Put.S("Frame: X = #f.X, Y = #f.Y, W = #f.W, H = #f.H$")

The argument string of Put.S is written to the standard output viewer. Every designator
that is preceded by a "#" is replaced by its value. A "$" denotes the beginning of a new
line.

The interface of module Put is simple:

DEFINITION Put;
PROCEDURE S (s: ARRAY OF CHAR);

END Put.

Procedure S uses module Out to write the string s to the standard output viewer. The
string has the following form:

string = '"' { char -- write this character
| "#" designator -- write the value of this designator
| "$" -- skip to a new line
}

'"'.

The designator must denote a variable of a basic type (in which case the value of this
variable is written), an array of character (in which case the array is written as a string),
or a pointer variable (in which case the numeric pointer value is written). As an
implementation restriction the designator must not denote a variable of an intermediate
procedure level and must not contain type guards.

Put.S is implemented using module Ref. The designators in the argument string are
looked up piecewise in various scopes. For example, the designator rec.a[i] is looked
up as follows:

- rec is first searched in the local scope (OpenStack) and - if not found - in the global
scope (OpenVars). If it is still not found, Put.S checks if rec is a module name
(because it is followed by a "."). In this case, the next name is assumed to be a
global variable of this module.

- Assume that rec is found and turns out to be a record variable. A rider r is positioned
on rec. Put.S zooms into rec (r.Zoom(r)) and looks for the field a. If it is found, the
rider r is positioned on it.

- Since a turns out to be an array, Put.S zooms into this array and starts a new
search for the designator i (first using OpenStack, then OpenVars, etc.). The value
of i is read, the rider r is positioned to the i-th element of a, and the value of this
element is read. This is the value of rec.a[i]. It is written to the output viewer in
readable form.

Acknowledgement

We would like to thank J. Templ for discussing with us the interface and the
implementation of module Ref as well as for proofreading an earlier draft of this report.

29

Appendix A: Run-Time Data Structures

This appendix shows the layout of several run-time data structures of the Oberon
system for Windows and Power Macintosh. Most of them were designed by members
of the OP2 project (R. Crelier, J. Templ, M. Brandis, M. Hausner, M. Franz) but they
were undocumented so that a systems programmer had to reverse-engineer them from
the source code again and again. To avoid this task we include their description in this
report.

A.1 Module descriptors

Module descriptors contain information about loaded modules. This information is used
by the loader, the debugger, and other metaprogramming tools. In Windows Oberon
module descriptors were designed so that they are easy to use by a programmer, in
PowerMac Oberon they were designed so that they are easy to initialize by the loader.

next

name (32)

init

key

refcnt

sb

varEntries

entries

cmds

ptrTab

tdescs

imports

data

code

refs

term

for Windows Oberon

module descriptor link

name (32)

refcnt

key

datasize, blocksize,

refsize, consize, ...

block

SB

PC

entries

commands

imports

typedescs

pointers

traps

refs

constants

global variables

code

entry offsets

cmd
names

cmd
offsets

to descriptors

of imported modules

descriptors
to type

pointer offsets

reference information

2 bytes each

4 bytes each

4 bytes each

2 + 2 bytes each

4 bytes each

24 + 2 bytes each

offset trap no

module descriptor

module block

for PowerMac Oberon

Figure 2. Module descriptor layout

A.2 Type descriptors

For every record type there is a unique type descriptor, which stores information such
as the type name, a pointer to the descriptor of the module that declares the type, the
table of methods, the table of base types, the extension level, the size of the record,
and the offsets of pointers within the record type (necessary for garbage collection).
Every record that is allocated on the heap has a hidden pointer to its type descriptor
(tag). Module Types implements portable access to the implementation-dependent

30

layout of type descriptors.

0000

tdsize

-4 (ptroff)

self

extlev

typename (32)

mod

method n-1

method 0

method 1

basetype[0]

basetype[1]

basetype[15]

recsize

ptroff 0

ptroff 1

-4 * (nofptrs + 1)

00000

tag

MOD 32 = 0

MOD 16 = 80

4

-4

-8

-72

0

4

8

12
16

48

tdsize

for Windows Oberon

heap obj

tdsize

-4 (ptroff)

tag

extlev

typename (32)

mod

PC (method nmth-1)

SB (method 0)

PC (method 0)

basetype[0]

basetype[1]

basetype[MaxExts-1]

recsize

ptroff 0

ptroff 1

-4 * (nofptrs + 1)

10tag

0

4

-4

-8

0

4

8

12
16

48

tdsize

nmth

-4*(MaxExts+1)

SB (method nmth-1)
-4*(MaxExts+3)

-4*(MaxExts+5)

supertag

for PowerMac Oberon

heap obj

Figure 3. Type descriptor layout

A.3 Dynamic array descriptors

Arrays that are allocated on the heap need a descriptor for the following reasons:
a) The length of dynamic arrays is only determined at run time. Thus it has to be stored

in a descriptor.
b) If the array contains pointers, the garbage collector must be able to find them.

Therefore the pointer offsets have to be stored in a descriptor.

The array descriptor is allocated in a single block together with the array elements (see
the figures on the next two pages). The whole block is treated as a record and
therefore has itself a hidden pointer to a type descriptor. Three cases have to be
distinguished:
a) The array elements are records containing pointers: The type descriptor of the array

block is the type descriptor of the element record. This type descriptor contains the
pointer offset within one record. The garbage collector replicates this type descriptor
over the whole array so that all pointers can be found. The fact that the type
descriptor must be replicated is indicated to the garbage collector by the "array bit"
in the array block's tag.

b) The array elements are (arrays of) pointers: The array block gets a dummy type
descriptor as if the elements of the array were records with a single pointer field.
This record description is again replicated over the array. The fact that the type
descriptor must be replicated is indicated to the garbage collector by the "array bit"
in the array block's tag.

c) The array elements are of a type that does not contain pointers: The array block
gets a dummy type descriptor as if it were a record without pointers.

31

PTR TO ARRAY 2, 3 OF INTEGER PTR TO ARRAY OF ARRAY OF INTEGER; NEW(p, 2, 3)

0000
size
-4

00000

MOD 32 = 0

MOD 16 = 80
-4

0
4

size

28

elems

markarray

0000
size

-4

00000

MOD 32 = 0

MOD 16 = 80

-4

0

4

size

28

0

0

0

3

2

elems

12

vectSize

PTR TO ARRAY 2, 3 OF RecWithoutPtrs PTR TO ARRAY OF ARRAY OF RecWithoutPtrs; NEW(p, 2, 3)

0000

size
-4

00000

MOD 32 = 0

MOD 16 = 80

-4

0
4

size

28

0

0

0

elems

12

0000

size
-4

00000

MOD 32 = 0

MOD 16 = 80

-4

0
4

size

28

0

0

0
3

2

elems

12

vectSize

PTR TO ARRAY 2, 3 OF RecWithPtrs PTR TO ARRAY OF ARRAY OF RecWithPtrs; NEW(p, 2, 3)

lastElem

reserved (GC)

firstElem

elems

10tag of Elem

3

2

MOD 32 = 0

MOD 8 = 0

lastElem

reserved (GC)

firstElem

elems

10tag of Elem

MOD 32 = 0

MOD 8 = 0

RecTD

PTR TO ARRAY 2, 3 OF POINTER PTR TO ARRAY OF ARRAY OF POINTER; NEW(p, 2, 3)

lastElem

reserved (GC)
firstElem

elems

10tag of Elem

Kernel.PtrElemDesc

MOD 32 = 0

MOD 8 = 0

4

0

-8

3

2

lastElem

reserved (GC)
firstElem

elems

10tag of Elem

MOD 32 = 0

MOD 8 = 0

Figure 4. Dynamic array descriptors under Windows Oberon

32

PTR TO ARRAY 2, 3 OF INTEGER PTR TO ARRAY OF ARRAY OF INTEGER; NEW(p, 2, 3)

00
elems

markarray

0
len
-4

00

elems

0
len
-4

0
0
0
2
3

8 bytes aligned

aligned so that the block size
is a multiple of 16 bytes

PTR TO ARRAY 2, 3 OF RecWithoutPtrs PTR TO ARRAY OF ARRAY OF RecWithoutPtrs; NEW(p, 2, 3)

00

elems

0
len
-4

0
0
0

00

elems

0
len
-4

0
0
0
2
3

PTR TO ARRAY 2, 3 OF RecWithPtrs PTR TO ARRAY OF ARRAY OF RecWithPtrs; NEW(p, 2, 3)

10

elems

reserved (GC)
first

last SpecialTD

4
0
-8

1 10

elems

reserved (GC)
first

last SpecialTD

4
0
-8

1

2
3

PTR TO ARRAY 2, 3 OF POINTER PTR TO ARRAY OF ARRAY OF POINTER; NEW(p, 2, 3)

10

elems

reserved (GC)
first

last

10

RecTD

10

elems

reserved (GC)
first

last

10

RecTD

2
3

Figure 5. Dynamic array descriptors under PowerMac Oberon

33

The first array element is aligned on an 8 byte boundary so that there is no problem
when accessing the elements of a POINTER TO ARRAY OF LONGREAL (some
processors require LONGREAL values to be aligned on an 8 byte boundary). The fields
inserted for alignment are shown in grey.

A.4 Stack Frames

Stack Frame under Windows Oberon

RAn

FPn-1

static link (if necessary)

local variables of proc n

open array parameters

FP

SP

parameters of proc n

+4

+8

1)

2)

5)

4)

3)

Figure 6. Stack frame under Windows Oberon

1) Parameters of proc n have positive offsets relative to the frame pointer. The first
parameter of the procedure is 12[FP], if there is a static link, otherwise 8[FP].
Further parameters have higher offsets.

2) If the static link of the procedure is necessary (to access intermediate level
variables), the static link is located at 8[FP].

3) RA n is the return address, i.e. the next instruction executed after the return from
proc n.

4) FP n-1 is the frame pointer of proc n-1. This forms the dynamic call chain (used for
unrolling the stack when a run-time trap occurred).

5) Local variables of proc n have negative offsets relative to the frame pointer. The first
local variable is 4[FP]

34

Stack Frame under PowerMac Oberon

FPn-1

R30

Ri

callee-saved registers

F31

Fi

callee-saved fp registers

vi

v0

local variables of proc n

pj

p9

parameters 9..j of proc n+1

alignment on 8 byte boundary

...

...

...

R10

R3

save area for the first 8

parameters of proc n+1...

SB n

RA n

CR

SP n-1

...

R11 (static link)

open array parameters

SP

FP

SP+4

SP+8

SP+12

SP+16

SP+20

FP+*

SP

FP

RA

SB

scratch

local variables

R1

R31

R0

R2

R3..R12

R13..R30

F

r

a

m

e

o

f

p

r

o

c

n

1)

1)

2)

4)

5)

6)

3)

Areas with a grey bar on their right-hand side

are only allocated if necessary

Figure 7. Stack frame under PowerMac Oberon

1) All registers that are used for local variables and formal parameters in proc n are
saved here upon procedure entry. At most 18 general purpose registers (R13..R30)
and 18 floating point registers (F14..F31) can be used for local variables.

2) For every local variable of proc n there is a storage location here, regardless if the
variable is in a register or in memory, if it is a simple or a structured variable.
Storage locations for formal parameters of proc n (regardless if integer or floating
point) are in the frame of proc n-1.

3) Only for local procedures; otherwise this field is missing.
4) Proc n+1 may save its parameters here if they were passed in registers but then

used as VAR parameters. On entry of proc n the actual parameters which are

passed in R3..Ri are transfered to Rj..R30 (i.e., R3 -> R30, R4 -> R29, etc.)
5) Only saved if proc n is not a leaf procedure.
6) Saved by the callee (proc n+1) but only if the callee is not a leaf procedure

35

A.5 How to get the modules

All modules described in this report (Modules, Types, Ref, RefElems) are part of the
standard distribution of the Linz version of Oberon V4 for Windows and Power
Macintosh and can be obtained via anonymous internet file transfer (ftp).

Hostname: ftp.ssw.uni-linz.ac.at
Directories: /pub/Oberon/Windows

/pub/Oberon/PowerMac

References

[Att89] G. Attardi et al.: Metalevel Programming in CLOS. Proceedings of the
ECOOP'89 conference. Cambridge University Press, 1989.

[Cre90] R. Crelier: OP2 - A portable Oberon compiler. Computer Science Report
125, ETH Zurich, 1990.

[GPHT91] R. Griesemer, C. Pfister, B. Heeb, J. Templ: Oberon technical notes.
Computer Science Report 156, ETH Zurich, 1991.

[GR83] A. Goldberg, D. Robson: Smalltalk-80, the language and its
implementation. Addison-Wesley, 1983.

[McCar60] J. McCarthy: Recursive functions of symbolic expressions and their
computation by a machine. Communications of the ACM 3 (4), 1960,
184-195

[MMN93] O. Lehrmann-Madsen, B. Moller-Pedersen, K. Nygaard: Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley,
1993.

[MöKo96] H. Mössenböck, K. Koskimies: Active Text for Structuring and
Understanding Source Code. To appear in Software - Practice and
Experience, 1996.

[ODBC94] Microsoft Open Database Connectivity Software Development Kit Version
2.0, Microsoft Press, 1994

[Rei91] M. Reiser: The Oberon System. User Guide and Programmer's Manual.
Addison-Wesley, 1991.

[Smi82] B. C. Smith: Reflection and Semantics in a Procedural Language. PhD
thesis, M.I.T., 1982.

[Ste96] C. Steindl: Entwurf und Implementierung einer Stücklistenverwaltung
mittels einer Client/Server-Datenbank. Diploma thesis, University Linz,
1996.

[Tem94] J. Templ: Metaprogramming in Oberon. Dissertation, ETH Zurich, 1994.
[US87] D. Ungar, R. B. Smith: SELF: The Power of Simplicity. Proceedings of the

OOPSLA'87 conference, Orlando, SIGPLAN Notices 22 (12), 1987.
[WiGu89] N. Wirth, J. Gutknecht: The Oberon System. Software-Practice and

Experience, 19(9), 1989, 857-893.
[WiGu92] N. Wirth, J. Gutknecht: Project Oberon - The design of an operating

system and compiler for NS32000. Addison-Wesley, 1992.

36

Technical Reports

The following reports can be obtained as postscript files from
ftp.ssw.uni-linz.ac.at/pub/Reports/

M. Hof: Connecting Oberon.
Report 7, 1996.

M. Knasmüller: Adding Persistence to the Oberon-System.
Report 6, 1996.

M. Hof: A Run Time Debugger for Oberon-2.
Report 5, 1995.

K. Koskimes, H. Mössenböck: Scenario-Based Browsing of Object-Oriented Systems.
Report 4, 1995.

H. Mössenböck, K. Koskmies: Active Text for Structuring and Understanding Source
Code.
Report 3, 1995.

K. Koskimies, H. Mössenböck: Designing a Framework for Language Implementation.
Report 2, 1995.

M. Knasmüller: Oberon Dialogs - User's Guide and Programmng Interfaces.
Report 1, 1994.

